
USAISEC AD-A269 959
US Army Information Systems Engineering Command
Fort Huachuca, AZ 85613-5300

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,

COMMUNICATIONS, AND COMPUTER SCIENCES

Integrated Office Information System (IOIS)
Summary Report:

An Object-Oriented SEM Design/Maintenance Methodology for an

Integrated Knowledge Base/Database
S.............. •ASQB-GM-90-024

DTIC MY19
ELFCTE MAY 1990
oEP 3 01993

I This document has been appzoved
f1T Public lrdease and sale; its

disri unozýu im-ted. 9Z

AIRMICS
115 O'Keefe Building
Georgia Institute of Technology
Atlanta, GA 30332-0800

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188
REPORTDOCUMENTATIONPAGEExp. Date: Jun 30, 1986

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASS IFIED NONE
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

"N&A_ NIA
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A__ _

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

ASQB-GM-90-024 N/A

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
AIRMICS (if applicable)

A- ASOB-M N/A
6c. ADDRESS (City, State, and Zip Code) 7b. ADDRESS (City, State, and ZIP Code)

115 O'Keefe Bldg.
Georgia Institute of Technology
Atlanta, Ga 30332-0800 N/A

8b. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

AIRMICS
ASQB-OM

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

115 O'Keefe Bldg. PROGRAM PROJECT I TASK IWORK UNIT
Georgia Institute of Technology ELEMENT NO. NO. NO. ACCESSION NO.
Atlanta. GA 30332-0800 62783A DY1O 05

11. TITLE (include Security Classification)

Integrated Office Information System (IOIS) Summary Report:
An Object-Oriented SEM Design/Maintenance Methodology for an Integrated Knowledge Base/Database

12. PERSONAL AUTHOR(S)
Dr. Olivia R. Liu Sheng, Joline Morrison, Mike Morrison

13a TPEOF EPRT13b. TIME COVERED j14. DATE OF REPORT (Year, Month, Day 15. PAGE COUNT
1aTYEOREOTFROM____ TO____ May 1990 T 28

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse It necessary and identify by block number)

FIELD GROUP SUBGROUP

19. ABSTRACT (Continue on reverse If necessary and identify by block number)

An object-oriented Structured Entity Method (SEM) design and maintenance methodology was com-
pleted as partial fulfillment of the February 3, 1989 proposal. Due to the object-oriented na-
ture, the methodology has been renamed the Structured Object Methodology (SOM). SOM provides
high level design tools somewhat similar to Entity Relationship Diagrams that, unlike ER Dia-
grams, are top down and hierarchical. SOM diagrams translate easily into objects that can be
coded into a knowledge base. The resulting knowledge base is easier to understand and maintain
than conventional knowledge bases with no underlying organization to their rules.
As was also suggested in the February 3, 1989 proposal, a prototype of an integrated KB/DB for
the IOIS was completed. The prototype fully utilizes SOM and verifies that it is a reasonable
design technique. SOM proved to be better suited to the task of integrating a KB/DB than other
design techniques that were explored at the same time. A subset of AIRMICS data was modeled us-
ing SOM and then entered into a normalized database. Oracle was chosen for the DBMS and the
knowledge base was written using PC-Scheme/Scoops, an object-oriented dialect of LISP.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

[] UNCLASSIFIED/UNLIMITEDQ SAME AS RPT. Q DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 122b. TELEPHONE(include Area Code) 22c. OFFICE SYMBOL
Michael Evans 404/894-3107 ASQB-GM

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted.
All other editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

This research was performed for the Army Institute for Research in Manage-
ment Information, Communications and Computer Science (AIRMICS), the
RDTE organization of the U.S. Army Information Systems Engineering
Command (USAISEC). This research is not to be construed as an official
Army position, unless so designated by other authorized documents. Material
included herein is approved for public release, distribution unlimited. Not
protected by copyright laws.

Accesion For

NTIS CR-;j
)TIC TA S

U1 h•of"u'.'ed Z

I Y .t...........

A i A' dr:ý r or

i t

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

des Gantt John R. Mitchell
Chief, MISD Director

AIRMICS

d °

IOIS Summary Report:
An Object-Oriented SEM Design/Maintenance

Methodology for an Integrated Knowledge Base/Database

Joline Morrison
Mike Morrison

Olivia R. Liu Sheng
University of Arizona
Tucson, AZ 85721

ThM& reaearch wn supprtWed in pert by a grant from the Army Institute of Research in Management Information, Communications, and
Computer Science (ARMICS). Allnta, Georgia, Grant #: DAiF-11-88-C4021.

EXECUTIVE SUMMARY

An object-oriented Structured Entity Method (SEM) design and maintenance

methodology was completed as partial fulfillment of the February 3, 1989 proposal. Due

to its object-oriented nature, the methodology has been renamed the Structured Object

Methodology (SOM). SOM provides high level design tools somewhat similar to Entity

Relationship Diagrams that, unlike ER Diagrams, are top down and hierarchical. SOM

diagrams translate easily into objects that can be coded into a knowledge base. The

resulting knowledge base is easier to understand and maintain than conventional knowledge

bases with no underlying organization to their rules.

As was also suggested in the February 3, 1989 proposal, a prototype of an

integrated KB/DB for the lOIS was completed. The prototype fully utilizes SOM and

verifies that it is a reasonable design technique. SOM proved to be better suited to the

task of integrating a KB/DB than other design techniques that were explored at the same

time. A subset of AIRMICS data was modeled using SOM and then entered into a

normalized database. Oracle was chosen for the DBMS and the knowledge base was

written using PC-Scheme/Scoops, an object-oriented dialect of LISP.

1. INTRODUCTION

Data may be characterized as factual, atomic statements, that occur in large volumes.
Conversely, knowledge consists of imprecise statements applicable to large groups of facts[1].
Data is generally more dynamic than knowledge; for example, a person's address (data) may
change, but the procedure of finding his house by looking up the address (knowledge) on
a city map does not.

A database uses a database management system (DBMS) to efficiently manipulate
a repository of data. Likewise, a knowledge base (KB) uses an inference engine to
efficiently manipulate knowledge (usually in the form of rules) and data (often hard-coded
as facts within rules). The coupling of DBMS and KB technologies allows facts to be
retrieved from a database and acted upon by a KB. Complex data retrieval tasks involving

abstract knowledge are assisted by the KB. Most coupled KB/DBMS systems have not
overcome one of the fundamental differences between data and knowledge, however: the
dynamic nature of data. If database tables or schemas are revised, knowledge base rules
must be updated to reflect these changes. Databases can be easily updated with new tables,
fields and records; however, reflecting such additions in a knowledge base is difficult.

The purpose of this paper is to demonstrate a solution to this problem with a
prototype of an intelligent database that explores object-oriented database and knowledge

base design within a dynamic query environment. This prototype, called PATHFINDER,
allows users with little system or database knowledge to access all possible combinations of
database information easily and quickly. PATHFINDER's KB is easily modified to reflect
changes in the database schema. This paper provides a brief review of intelligent database
theory and previous intelligent database systems, followed by a description of
PATHFINDER's architecture, design and implementation. Ideas for additional features and
functions are also presented.

2. INTELLIGENT DATABASE THEORY

An intelligent database is separated into two parts: the "extensional" database and
the "intensional" database[2]. The extensional database stores explicit data values while the

i m Im m m1

intensional database stores deductive information used to derive new data from the explicit
data. An example of tuples in an extensional BUILDINGSUPPLIER table could be
represented in the predicate form of (TABLENAME(FIELD1, FIELD2, ...)) by:

BUILDINGSUPPLIER(ACME,PAINT)
BUILDING_SUPPLIER(SMITH,LUMBER)
BUILDING_SUPPLIER(ACE, PAINT)

A first order logic derived query could be formed to find all suppliers of PAINT or
LUMBER. An example of intensional knowledge stating that every SUPPLY carried by a
BUILDINGSUPPLIER is a BUILDINGSUPPLY would be:

BUILDINGSUPPLY(y) <--- BUILDINGSUPPLIER(x, y)

The difference between intensionai and extensional knowledge is not always clear,
because databases sometimes incorporate features that are intensional by the above
definition. Nevertheless, a knowledge base should contain knowledge that is more stable and
at a higher level of abstraction that the extensional knowledge contained in a database.

Wiederhold used levels of abstract ion to define nine categories of knowledge relevant
to a database [3]. They were loosely grouped into intensional and extensional knowledge.
A natural place to begin a knowledge base/database coupling is with knowledge one level
of abstraction higher than normally found in database. Using Wiederhold's classification,
stnrctural knowledge is the first level of knowledge that is clearly in the domain of a
knowledge base. It is composed primarily of knowledge about dependencies and constraints
among the data.

Gardarin and Valduriez[4] base/database integration: loose coupling tight coupling,
and complete integration. Loose coupling is demonstrated by using a call interface to allow
communication between an existing relational DBMS and a separate existing logic
programming language. The DBMS is invoked using predicates pre-defined in a special
syntax, usually SQL. AI-Zobaidie and Grimson[5] also stipulate that all data is loaded to the
expert system as a snapshot from the database prior to operation of the expert system (KB).
Tight coupling relaxes the pre-defined predicate constraint for DBMS calls and makes the
DBMS invisible to the user, but the logic programming language and DBMS still exist as
separate entities. Al-Zobaidie and Grimson perhaps state this more clearly by saying that
data is only retrieved from the database as needed during operation of the expert system.

2

Complete integration, the highest level of synthesis, requires the logic programming language
to be incorporated into the DBMS. Bell, et. al.[2] subdivided tight coupling depending upon
whether it occurred at the logical, functional, or physical level. Their functional and physical
tight coupling appear to correspond respectively to Gardarin and Valduriez's tight coupling
and complete integration.

A1-Zobaidie and Grimson[5] have another way of categorizing types of deductive
databases. They divide them into intelligent DB, enhanced ES (expert system), and inter-
system communication. Their major distinction lies in whether the underlying design
emphasizes a database (with expert system capabilities added), an expert system (with
database functionality added), or both. Inter-system communication allows both the KB and
DB to continue to operate independently of each other but to also communicate as needed.

3. EXAMPLES OF INTELLIGENT DATABASES

The KDL-ADVISOR was a system built by Potter[6] to demonstrate the feasibility
of the Knowledge/Data Model. A schema specification language is used to capture both
knowledge semantics as well as data semantics. A number of extensions to the semantic
data model are presented all of which are intended to allow the representation of more
abstract knowledge. The KDL-ADVISOR knowledge base was coded using Prolog. The
DBMS was not mentioned and possibly extensional facts were also coded using Prolog. As
a result, this prototype may not be comparable to PATHFINDER and possibly does not
represent an integrated KB/DB. Potter presents a simple example to illustrate the
ADVISOR's knowledge/data schema. The example shown appeared quite complex,
however, when diagrammed and was difficult to follow. Perhaps the Knowledge/Data Model
would be well suited to professionals specializing in this methodology, but for others, a
simpler model like PATHFINDER's would help.

LOOD (Logic-oriented object data base) was described by Sheu[7] and is a way to
formally describe intelligent databases. Sheu notes "a logic-oriented object base can be
described as a data model that is constructed on the basis of an enhanced semantic data
model that incorporates more procedural semantics and is represented in logic." No
mention was made of a prototype using the LOOD methodology, however, it appears that
one could be constructed. LOOD appears to be more mathematically oriented than the
Knowledge/data Model and as such is even more complex. For this reason, it will probably
not become widely used.

3

Others have described systems without uiing into the underlying formalisms in as
great depth. Smith, et. a][8, 9] have described a knowledge based search intermediary called

EP-X that is designed to facilitate information retrieval from a thesaurus type of system.

Documents were represented as frames with a list of title, authors, title, etc. Concepts

(keywords, subjects, etc.) were also organized hierarchically to support efficient searching

for relevant documents. The tools used to construct the KB and DB were not described in

the two papers reviewed. No information as to the type of coupling was presented.

CoalSORT[10] can be categorized as a browsing knowledge-based interface to a

database. It uses a frame based semantic net to aid both searchers and indexers when

seeking or cataloging documents. CoalSORT's method of browsing is similar to

PATHFINDER's. Its KB was written with FrameKit, a frame representation language

written at Carnegie Mellon University. A DBMS was not mentioned.

4. DESIGN AND IMPLEMENTATION

PATHFINDER is part of the University of Arizona MIS Department's Integrated
Office Information System (IOIS) project. Although most office systems are used primarily

by clerical and secretarial employees, the IOIS aims to increase office productivity by

creating a system for use by both managerial and clerical/secretarial personnel. A wide

range of applications, from word processing to distributed electronic meeting systems, are

integrated into a system with a consistent user interface. PATHFINDER is intended to

provide database support for all IOIS applications.
PATHFINDER was developed on an 80386 PC, and eventually will be ported to

heterogenous hardware and operating systems. Oracle was chosen as the DBMS because

of its ability to make dynamic queries. C was chosen as the interface language to achieve
compatibility with Oracle's Pro C pre-compiler, which allows the dynamic queries through

SQL calls embedded in C programs. PC Scheme with SCOOPS (Scheme Object-Oriented
Programming System), a LISP dialect, was chosen for the knowledge base implementation

because of its object-oriented features and because of the authors familiarity with it.

The current prototype allows users to navigate through a relational database, determine

related entities, and make queries involving joins of up to three relations (joins of more than

three relations can be done and will be implemented later). The KB requires no

modification if fields are added or deleted in the database. If the database schema is
changed, the KB is modified using a high level tool written in Scheme that creates new KB

4

objects and stores them in files; when the system is started, these objects are automatically
loaded into PATHFINDER's knowledge base.

4.1 System Architecture

PATHFINDER can be characterized as a tightly-coupled system [4, 5] and also fits

AI-Zobaidie and Grimson's[5] definition of a type 3c deductive database (inter-system

communication with interfacing routines lying between the user, KB, and DBMS). Figure

1 shows a high level view of PATHFINDER's architecture, and illustrates that the interface

is the communications link between the knowledge base, database, and system users and

administrators. Users are required to go through the knowledge base to access the database;

the database and knowledge base administrators can access the database or knowledge base

directly through the interface to make system modifications. The primary use of databasc

facts returned to the knowledge base has been to supply display and search field names;

database query results are returned directly to the user via the interface.

Oracle's pre-compiler, Pro C, enables Oracle calls to be embedded within C

programs. Pro C also provides for "Dynamic SQL", which allows dynamically defined SQL

statements (i.e. statements unknown at compile time) to be executed. Four levels of

Dynamic SQL are available, distinguished by incrementally-increased query flexibility. The

simplest Dynamic SQL program requires most of a SQL call to be anticipated in advance

and coded into the program; the most complex, used by PATHFINDER, allows any SQL

call to specified entirely at runtime.

4.2 Interface

4.2.1 Functions PATHFINDER's first menu displays high-level database object

names representing specific query topics, and prompts the user to select names of topics
involved in a query (Figure 2-1). The user is allowed to choose several names from each

menu, and may sometimes choose a group of unrelated names (topics). If this happens, an

error message is displayed and the system backs up to the previous state. If a query can be
made using the selected name or combination of names, the user chooses SELECT

SEARCH/DISPLAY FIELDS and proceeds with the query (Figure 2-2), or when available,
SELECT MORE CRITERIA, to add more names.

If the user chooses SELECT SEARCH/DISPLAY FIELDS, the system dynamically

queries the database to determine the relevant fields, and allows the user to specify display

fields and search conditions (Figures 3-1 and 3-2). The text of the resulting query is then

5

High Level Architecture of

PROPHET

KB DB
Administrator Users Administrator

Interface
(C) _

Knowledge I iD b

Base Database
I ~(Oracle - Dynamic

(Scheme/SCOOPS) ISL

PROPHET!

Figure 1

displayed (Figure 4-1), the query is run, and the result is shown in a scrollable window

(Figure 4-2). The initial menu is then re-displayed.

If the user chooses to add more object names, all remaining related objects are

displayed. He or she may continue to select related objects as long as any are available, or

may specify to select display/search fields and then run a query. The user is always allowed

to make a new query or quit the system.

4.2.2 Components The interface consists of two high-level modules, the User/KB

Interface and the User/Database Interface (Figure 5). This was necessary because the

Oracle DBMS and the window libraries were incompatible; two window libraries were tried.

6

Integrated Office Information System
Data Retrieval

Specify Area(s) of Interest: Selections...

BUOGET
PROJECT

BUDGET
PROJECT

(1) EMPLOYE=
RESEARC- AREA
RESEARC- TECHNIOUE

RESEARC-
7 0OL

MAKE NE.', ZUERY
QUIT SY--M

Enter - SELECT or REMOVE F1 HELP

FIO - SUBMIT & CONTINUE Esc - QUIT

Integrated Office Information System i
Data Retrieval

S i A nPrevious Selections..
Specify An Action: BDEBUDGET

PROJECT

Selections...
SELECT SEARCHI/DISPL

SELECT SEARCH/DISPLAY FIELDS
E!SELECT MORE :zjTERIA

(2) E~.' UP, I u
0,, T SYSTEM

Enter - SELECT or REMOVE F - HELP
FIO - SUBMIT & CONTINUE Eec -QUIT

Figure 2

7

Integrated Olfice Information System
Data Retrieval

PROJ-BUDG Selected Field...
Select Fields to Display: I

P ROJ 9BU DQ. ID

PROJBUDG.YEAR

r Select Fielde'1
i PID
SYEAR
i)AMOUNTI1) " SOUIRCE,

Make N•e Query
Ouit

Enter - SELECT or REMOVE F1 - HELP

FiO - SUBMIT & CONTINUE Etc - QUIT

integrated Oflice Information System

Data Retrieval -, Column & Search Conditions

!.PROJECT $
i Select Fields for Search: F.Ied4

P ROJ_5UC0.PI|D

PROJBU5O.YEAR
PROJ-BUDO.AMOUNT

"Search Cond.. PROJECT.CON TRACTOR
P -ROJ ECT START -DATE

7;TLE esret cc iloela

CONTRACTOR PROJ.eLIOO.AMOUNT , '0000'
()STARTDATE PROJECT.CONTR - 'U of A'

STOP-DATE
%.:ke Newv Query
Quit Syst6m

Enter - SELECT or REMOVE F1 - HELP

FIO - SUBMIT & CONTINUE Esc - OUIT

Figure 3

8

integrated Office Information System
Data Retrieval - Run the Query?

r ScrollE ble Window - Press Ese to exit..
S8ELECT

PROJ.-UDG.PID. PROJ.BUDG.YEAR,

PROJECT.CONTRACTOR, P ROJ ECT.STAR T.OATE

FROM PROJBUDG. PROJECT
WHERE PROJ.BUDG.AMOUNT '*0000'

I AND PROJECT.CONTRACTOR -U OF A'

(1•) IAND PROJ-BUDG.PID " PROJECT.PIDO

lRun the auorv

Make New Query
Quit System,

Enter - Submit & Continue Fi HELP

Esec QUIT

Integrated Office Information System

Data Retrieval - Query

Scroilable Window - Press Esc to exit..

PID YEAR AMOUNT CONTRACTO START.DATE

1989-- 100000 U OF A - 1-JAN-86
1 1988 100000 U OF A 01-JUN-86
2 1988 75000 U OF A 01-JUN-89

(2)

F1 -HELP
Esc - QUIT

Figure 4

9

The interface was therefore split into separate types of executable programs - one type reads

files created by the knowledge base and then interacts with the user, and the other type

accesses the DBMS. C's spawni command (similar to fork and execl) was used to get from

one executable file to another.

Rather than putting all of the User/KB Interface into one executable file, three

smaller files were created: Route, Display/Search, and Query. Smaller files load faster from

the knowledge base's Scheme DOS-CALL command (equivalent to a spawnl with a P-WAIT

parameter). Two separate executable files were created for the User/Database Interface.

Scheme's object-oriented functions conflicted with Oracle when they were loaded into

extended memory. This problem was resolved with only a slight performance penalty by

running Scheme in the lower 640 KB of memory.

4.3 Database Design and Implementation

The current IOIS prototype is designed for the office of AIRMICS, the IOIS project's

funding agency. PATHFINDER was therefore designed according to a subset of their

database specifications. AIRMICS is an information systems research office of the United

States Army. One of their tasks is to review research proposals, fund projects that cover

topics relevant to their current goals, and o'ersee these projects. Employees at AIRMICS

include researchers, managers, and staff support personnel. When a project is approved for

funding, a manager and researchers may be assigned to it. Every project falls into a single

Research Area (such as Office Automation); projects may employ several Research

Techniques (such as case study, survey, software engineering, etc.) and Research Tools (such

as KEE, LISP, Excelerator, etc.). Researchers and managers specialize in certain Research

Areas, Techniques, and Tools. Further, Research Areas correspond to certain Research

Techniques and Research Tools, and vice-versa. Every project has a specific budget;

AIRMICS' total budget consists of their Operations Budget plus the total of all of the

project budgets.

The database schema was designed using both the Structured Object Methodology

(SOM)[11] and the ER Model[12]. SOM was developed by Higa[11] as a graphic method

of designing database schemas by showing hierarchical relationships. This method requires

the creation of two diagrams, the Initial SOM and Final SOM. The Initial SOM presents

the logical relations between entities (Figure 6); the Final SOM represents the logical file

structure (Figure 7). Rules similar to those used to generate files from an ER Model can

be used generate a Final SOM from an Initial SOM. In general, one-to-one relationships

10

oI

- Cc

00 E - ZZl:

V 7;

0 C 0

0~ * 0 E 0

Cl ,;o0 ook C~.)CE

CL ftU QQOcu *00 ft

0 cc

LLT

generate one file, one-to-many relationships generate two files, and many-to-many
relationships generate three files [13]. The resulting database schema is in third normal

form. (A more detailed description of SOM is in [14]). Although we were initially more

familiar with the ER Model, SOM was easier to translate into KB objects and was easier to

follow as relationships became more complex. Figures 8 and 9 show ER diagrams

comparable to the SOM diagrams and are included for comparison.

4.4 Knowledge Base Design and Implementation

The components of the Knowledge Base (KB) are shown in Figure 10, and the

functions of each component are explained below.

4.4.1 KB-Objects An instance (object) of KB-Objects exists for each possible

combination of database entity names that a user may select to be used in a query. These

objects are a unique type of object called a par-set[15]. These objects have methods that

allow all instances of the objects to be evaluated concurrently. This property is necessary

in this application because when the user selects a desired combination of entity names, the

KB-Controller sends a message to each KB-OBJECT asking if it is the requested object. In

a large data base with several entities, hundreds of entity-combination objects can potentially

exist. Concurrent evaluation is necessary to make system response time acceptable.

Each of these objects have the following instance variables that uniquely identify them,

determine the database structure, and provide query knowledge:

Detennilant-List - a list of object names that uniquely identify the object

Child-List - a list of objects directly related to the current object

Data-Files - a list of the database file names related to the object

Keys - a list of the keys of the files specified in the Data-Files

Link-File - a list of the linking files related to the object; for
example, in the object PROJECT-EMPLOYEE, data
files PROJECT (with key PID) and EMPLOYEE (with
key SSN) are linked by file PROJ-EMP (with composite
key PID and SSN)

12

c.T

9 2.in~i

w at cLl
17?f

-~ aI

0ca c

0=0

a. -..

LIE]0

F- 0

0. co. r;.I

z~ s-; I I

0 '2

t7L

L 1f2T

m -

4j'
"V 06

cca

'U

< o
co,

CLL

00

cc cc

CL=
CL- E CL go

E a Lul! E!U,12 CL 0

CLO
0

LU 0
0

E
LU

Z
i
0
CL

C"
CL woC.

0 alV

0C
30C 0

cc

9t

6 ain~i4

oil
cc cc 0

at-

00

CL HI

KB Components

KB Users

Administrator

Interface

I ! A
KBA Input Input OutputKB n~~~From Usereiiniiiiito User

* L1
KB- K, KB- i

'Macros Controller
, New Objects'

I ReQuest
Object

KB-
O b je c ts •,' '....

O c Output to
Database

Object Instalnce

I I Vitrasables and Ruies

a or Eror Message

KB- Environment Info.

Environment -
E nvtronment Info.

Figure 10

17

Each KB-Objects also contains another par-set object consisting of a list of rules that

determines the object's current position in the inferencing sequence and, when fired, carries

out the appropriate action. A summary of rule conditions and actions is as follows:

Condition Action
Object Initially Send menu items SELECT SEARCH/DISPLAY
Selected FIELDS, get MORE CRITERIA,

BACK-UP or QUIT to interface

User chooses Send database file names to interface;
SELECT interpret them, determine type of query, get the
SEARCH/ data file keys if necessary, and assemble
DISPLAY the query
FIELDS

User chooses to Send object's Child-List to interface
get MORE
CRITERIA

The hierarchical nature of the SOM translates easily into these objects representing

First-Level
K1B-Objects

Bludget Prjc Emnpl to IResearch- Feer-

SRouting Obect - Routing or
L J_ Query Object

Figure 11

user-defined queries. The first level of KB-Objects (Figure 11) was created to represent the

first-level objects on the Initial SOM. For these first-level objects, direct queries can be

made only through objects that correspond to a single database file. From the Final SOM

18

(Figure 7), this includes all first-level objects except BUDGET'. At this point, two types

of KB-Objects emerge: Route-Only-Objects, and Route-or-Query-Objects.

Next, additional objects were created to represent the expansion of the first level

objects to include all possible combinations of related objects that might be used when

making a query. The Initial SOM shows database object relationships hierarchically, and is

used to determine the next level of objects. For example, the expansion of related object-

name-combinations for BUDGET includes BUDGET-PROJECT, BUDGET-OPERATIONS,

and BUDGET-PROJECT-OPERATIONS, since PROJECT and OPERATIONS are

BUDGET'S only children. Objects resulting from PROJECT-BUDGET include combinations

of itself with the children of PROJECT (RESEARCHER, MANAGER, RESEARCH-AREA,

RESEARCH-TECHNIQUE, and RESEARCH-TOOL) less PROJECT-BUDGET itself, and

all possible combinations of these objects. The complete expansion of BUDGET is shown

in Figures 12 and 13. This expansion reveals a third type of Name-Combination object: the

Query-Only-Object. No further expansion is possible beyond this, since no more related

database objects exist. Expansion of the remaining first-level objects is completed in a

similar manner.

The different types of KB-Objects are differentiated by the values of their instance

variables: a Route-Only-Object has no Data-Files, and a Query-Only-Object has an empty

Child-List.

A unique instance of KB-Objects, the User-Object, was created to initialize the state

variables and the stack that saves environments, and start the inferencing process.

4.4.2 KB-Controller The KB-Controller is the module that coordinates the actions

of the other modules in the knowledge base. It interprets user inputs through the Interface

through three methods. Get-Input assembles the object name combinations chosen by the

user, and then asks all KB-Objects if their Determinant-List matches this list. If a match is

found, that object's rules are used by the KB-Controller for the next forward-chaining

sequence. The object's rule conditions are tested against the present system state. If a

condition is satisfied, the selected rule is fired; these rules evoke various interface programs

and pause the KB. The interface program prompts the user to input further data, and the

cycle is repeated. If no match is found, an error message is given, and the prior

1 When a user selects BUDGET, he or she must further specify PROJECT, OPERATIONS. or both, to
make a query. However, if PROJECT is chosen first, it is possible to either run a query immediately or to be
routed to related objects.

19

KB-Object Combinations [. Routing Object
Under Budget Routing or

Query Object

Budget r-__-I Query Object

Budget/ Budget/ Budget/
Project IFOperations Project/

Operations

i Budget/ Budget/
Project/ Project/
Employee I Research-Area

I-I
SBudget/

"Project/
(See Research-Tech
Budget/Project •
Employee
e x p a n s io n) ._____ud g a t /

LiBudget/'
Project/
Research-Tool

__l Budget/
Project/

Research-Area/I Tech

IfBudget/
Project/
Research-Area/
Tool

[Budget/

SProject/Research-Area/

Tech/Tool

I Budget/SProject/
Research-Tech/
Tool

Figure 12

20

KB-Object Combinations Under

Budget/Project/
E yg/- Routlng or

Employee Budget/ Query Object
Project/
Employee - Query Object

BBtud getBug(
Project/ Projert/ IeProhet/Researcherearohect
Researcher Manager Researher/

ane/Manager

Researcher/ esearcher/

Research-Area i Research-Area anaeer/-r

Budget/Project/
7 Budget/Proiect/

Budgel/Project/ Alanager/ Researcher/
.Researcher/ ManagResearcher/

ýýResearch-Tecf eResearch-Tech ager e

j

Research-Tech

,.Budget/Project/ [Budget/Project! Budget/Project/ U
SResearcherl Manager/ Researcher/

"-"Research-Tool Research-Tool Manager/
Research-Tool

;Bde/r.et Budget/Proiect/ Budget/Project/I
)'Researcher/

Researcher/

-•lResearch- Ara/ Research-Area/ Manager/

[Research-Tech i IResearch-Tech Area/Tech

"u•uget/Project/ Budgelfrojec uuge a ro ec

!Researcher/ Manager/ Researcher/

!Research-Area/ Research-Area/ Manager/
o Research-Tool Area/Tool

lR:::arch-Tool I Rsac-olTcVoiI et/Pro7c./ FrBudg.t/Project/ I.Budget/Project/
Research MIManager/ Resa rcher/

'Rehearc h Tech/ Research-Tech/ Manger/ IJjR,,ear1-Too..esearch-Tool Toch/ ý

udgesearjchToo Bugt/rjetTBdet/Project!

R *3earchere IManager/ Researcher/

Research-Areal/ I ech-Area/TeCh/T m gTech/Tool Tech/Toroh- Area/ -1 Manager

Figure 13

21

environment, stored in the KB-Environment, is restored.

Get-Display-Input retrieves the display file and field names chosen by the user, and
assembles them into SQL syntax to be inserted later into the query. Get-Search-hzput

retrieves the search file and field names chosen by the user, and puts them in a SQL search
statement consisting of the search file name, followed by all search statements associated

with it, followed by the next search file name, etc.

4.4.3 KB-Environment The KB-Environment maintains a stack of state variables
defining all environments created during a single query-building session. This stack is cleared

at the beginning of each new query cycle, and an environment is saved immediately before

the firing of a rule. If the user enters an invalid (unrelated) combination of keywords, an
error message is given, and the previous environment is restored. Previous environments

are also available to the user through the "BACK UP" command on the system menus.

4.4.4 KB-Macros A macro was written to define each KB-Objects instance; this

macro calls a second macro that creates each instance's rule-list. The first macro is evoked
by a single command containing the macro name followed by its arguments, entered either

on the SCHEME command line or stored in a file that is then executed.

A portion of the code that defines the new object and creates one of its rules is as

follows:

(macro make-leaf-obj (lambda(e)
(let*(

(obj-name (list-ref e 1))
(obj-d-list (list-ref e 2))
(obj-child-list (list-ref e 3))
(obj-file-name (list-ref e 4))
(df-obj (list-ref e 5))
(keys (list-ref e 6))
(link-file (list-ref df-obj 2))
(outfile (open-output-file obj-file-name))
(clause '0)
(rule-name '0)
(rule-count 1)
)

;;; define object
(set! clause

'(define ,(eval obj-name) kmake-instance kb-objects
'name ,obj-name

22

'd-list ,obj-d-list

'child-list ,obj-child-list
'df-obj ,df-obj
'keys ,keys
'link-file ,link-file

(write clause outfile)

;;; define rule
(set! clause

'(make-obj-rule
'name ,rule-name
'condition

'(and (eq-mem? user-list ',(eval obj-d-list))
(equal? run-query '0)
(equal? more-cri '0)
(equal? query-spec 0))

'action

'(begin
(set! header "Specify An Action:")
(if(not(equal?(send,(eval obj-name)get-child-list)'(EMPTY)))

(set! menu-choices
'(select-search/display-fields select-moi e-criteria))

,,, else
(set! menu-choices '(select-search/display-fields))

);end if
(write-to-file header menu-choices)
(dos-call "read.exe" (string-append "mcnu.txt"

(convert-to-string user-list)))
(send kb-translator get-input))))

(write clause outfile)

A sample macro call is:

(make-leaf-obj 'EMPLOYEE '(EMPLOYEE) '(RESEARCHER MANAGER STAFF) "EMP.S"
'(EMPLOYEE) '(SSN))

This command creates an instance of KB-Objects named EMPLOYEE, with the following instance variables:
Determinant-List (EMPLOYEE)
Child-List (RESEARCHER MANAGER STAFF)
Database file EMPLOYEE
Key SSN

This object is stored in the file "EMP.S" to avoid having to re-generate it each time the
system is started.

23

5. FUTURE DIRECTIONS

A sample of additional features that can be added to PATHFINDER include:

Queries joining four or more database files by using SQL views;

Mathematically-derived query results;

The ability to generate or validate project budgets by matching user-entered

project parameters to previous projects, and comparing related budget items;

Error analysis to determine why a query returned no values or unexpected

values;

Query syntax optimization to minimize retrieval time;

A clear (non-SQL) statement of what a potential query will display, presented

to the user prior to running the query;

,Allow the user to compose queries directly, in a more natural language than

SQL, and then have the svstcm translate the query into SQL syntax.

6. CONCLUSION

The PATHFINDER architecture is mn,, .itve because it is flexible, maintainable, and
expandable. It demonstrates a way for nknic users to choose from an exhaustive set of
database queries without numerous lines o(hard-coded and restrictive SQL statements. Due
to the dynamic nature of the queries, the knowledge base is independent of the database
content, and is easily modified if the datbase .,Schema is changed. The knowledge base can
also be expanded to a higher level of ahiraction to incorporate different and more
sophisticated types of knowledge.

Pathfinder also demonstrates that obh':ct oriented designs provide more than just an
easier, more natural way to represent a program. Object orientation allows clear data
models to be displayed to end users in an understandable way and improves their access to
that data. The potential for improving database and knowledge base representation to both
programmers and users by using the techniques described in this paper appear high.

24

REFERENCES

1. BRODIE, M.L., BALZER, R., WIEDERHOLD, G., BRACHMAN, R.,
MYLOPOULOS, J. Knowledge Base Management Systems: Discussions for the
Working Group, Expert Database Systems, Proceedings From the First International
Workshop, October 24-27, 1987, Kiawah Island, S.C., p. 24.

2. Bell, D.A., Shao, J., Hull, M.E.C., Integrated Deductive Database System
Implementation: A Systematic Study, The Computer Journal,
33, 1, 1990.

3. WEIDERHOLD, G. Knowledge and Database Management, IEEE Software, Jan.
1984, 63-73.

4. GARDARIN, G., Valduriez, P. Relational Databases and Knowledge Bases, Addison-
Wesley, Reading, Mass.. 1989.

5. A1-Zobaidie, A., Grimson, J.B., Expert systems and database systems: how can they
'serve each other?, Expert Systems, 4, 1 (Feb 1987).

6. Potter, W.D., KDL-Advisor: a knowledge/data based system written in KDL, in, Proc.
21st Annual Hawaii hIt. Conf on System Sciences and Knowledge-Based Systems Track,
(Kailua-Kona, HI, Jan 1988).

7. Sheu, P.C., Describing Semantic Data Bases with Logic, The Journal of Systems and
Software, (Sept 1989).

8. Smith, P.J., Shute, J., Galdes, D., Knowledge-Based Search Tactics for an Intelligent
Intermediary System, ACM Trans on Information Systems, 7, 3, (July 1989) pp 246-
270.

9. Smith, P.J., Krawczak, D.A., Shute, S.J., Chignell, M., Cognitive engineering issues in
the design of a knowledge-based information retrieval system, Proceedings of the
Human Factors Society - 29th Annual Meeting - 1985 (Baltimore, Md., Sept 29 - Oct
3), pp 362-366.

10. Monarch, I., Carbonell, J., COALSORT: A knowledge - based interface, IEEE
Expert, (Spring 1987).

11. HIGA, K., SHENG, O.R.L. An Object-Oriented Methodology for End-User Logical
Database Design: The Structured Entity Approach iln Proceedings of Compsac '89
(Orlando, Fla., Sept. 1989).

25

12. CHEN, P. P. The entity-relationship model-Toward a unified view of data. ACM
Trans. Database Syst., 1, 1 (1976), 9-36.

13. ELIASON, A. L. Systems Development -Analysis, Design and Implementation. Scott,
Foresman and Company, Glenview, Ill., 1987.

14. HIGA, K. End-User Logical Database Design: The Structured Entity Model
Approach. Unpublished Ph.D Dissertation, University of Arizona, 1988.

15. Zeigler, B. P. University of Arizona, Electrical and Computer Engineering
Department, Personal Communication.

26

IOIS SOFTWARE REQUIREMENTS

The implementation of an integrated knowledge base and database for the IOIS has

introduced new software requirements. Previously, the only commercial package required

to run the IOIS was EXSYS, an expert system shell. Most of the OIS was coded in "C'

and did not require runtime licenses or third party software. A detailed review of lOIS

software and costs can be found in "Integrated Office Information System (IOIS) Interim

Report" submitted to AIRMICS September 11, 1989.
With the addition of an "intelligent" database, two new packages are now required.

Oracle was chosen for the DBMS after discussions with AIRMICS indicated AIRMICS had

access to Oracle. EXSYS was not used for the knowledge base because it is not object

oriented. Instead a dialect of LISP, PC-Scheme with SCOOPS, was chosen. PC-Scheme

provides the power and flexibility of LISP with the addition of the Scheme Object Oriented
Programming System.

Scheme provides a good research programming environment, however, it is an

interpreted language and must be loaded before running a Scheme application. It is

inexpensive, and can generally be found at mail order prices under $100 (the student
version costs less than $40 and is all that is required to run the prototype - the only

restriction is that it cannot be run in extended or expanded memory). PC-Scheme is not

a particularly good language to use if the prototype is to be expanded into a full-sized

system, however, since programs developed %ith interpreted languages tend to run slowly

(the PC-Scheme knowledge base still runs faster than applications developed with Nexpert -

see earlier IOIS reports). It would be easy to translate the PC-Scheme knowledge base
using a language such as C+ + into a compiled program. Less memory would be required

to run the program (the PC-Scheme programming environment would not have to be
loaded first) and the resulting program would run faster. A compiled C+ + program could

also be distributed without the complications of buying extra third party software or

runtime licenses.

If the knowledge base must run in a UNIX environment, it would have to be

recoded since the UNIX version of Scheme does not offer the SCOOPS enhancement.
C+ + offers an attractive option for doing this and would maximize portability.

